Adaptive Shock Compensation in the Multi-layer Network of Global Food Production and Trade

5 November 2024

Global food production and trade networks are highly dynamic, especially in response to shortages when countries adjust their supply strategies. In this study, we examine adjustments across 123 agri-food products from 192 countries resulting in 23616 individual scenarios of food shortage, and calibrate a multi-layer network model to understand the propagation of the shocks. 

We analyze shock mitigation actions, such as increasing imports, boosting production, or substituting food items. Our findings indicate that these lead to spillover effects potentially exacerbating food inequality: an Indian rice shock resulted in a 5.8 % increase in rice losses in countries with a low Human Development Index (HDI) and a 14.2 % decrease in those with a high HDI. 

Considering multiple interacting shocks leads to super-additive losses of up to 12 % of the total available food volume across the global food production network. This framework allows us to identify combinations of shocks that pose substantial systemic risks and reduce the resilience of the global food supply.